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Abstract—The insertion and removal of central venous
catheter are associated with potentially fatal bleeding risk. This
paper presents the design and development of BWatch, an ef-
fective stand-alone electronic device that continuously monitors
the catheter insertion and extraction site for critical re-bleeding,
that alerts medical staff immediately for proper care. The device
employs novel non-invasive methods for blood detection. A
capacitive circuit was designed to detect the presence of the
moisture on the bandage. Exploiting the unique light absorption
spectra of haemoglobin, the device subsequently illuminates
and measures the absorbance of green light for accurate
detection. Principal Component Analysis (PCA) was used to
derive a suitable green LED light intensity and a single-value
threshold from a triple-channel RGB light sensor for robust
detection across medium. Finally, an experimental bench test
was conducted in Changi General Hospital (CGH) and BWatch
achieved 100% detection accuracy across 10 experimental run
with real blood samples.

I. INTRODUCTION

Central venous catheters (CVCs) are commonly adopted in
clinical practice to administer medications, fluids, nutrition,
and for medical procedures such as haemodialysis. However,
the insertion and removal of CVCs are associated with
potentially fatal haemorrhage risk (i.e. bleeding) and other
complications [1][2]. After insertion or extraction, the wound
site requires active medical supervision by medical staff
for critical re-bleeding at 15 mins and 30 mins interval
for the first and next two hours window respectively [3].
In this work, a smart medical device to afford continuous
real-time monitoring of the wound site, alerting medical
personnel immediately of bleeding episodes for proper care,
is presented.

The extensive research conducted on optical sensing tech-
niques for non-invasive reflectance pulse oximetry and glu-
cose monitoring are highly relevant to this work. The optical
characteristics of the object at one or more wavelength are
exploited. In the case of pulse oximetry, the light absorp-
tion difference between oxygenated haemoglobin (HbO2)
and deoxygenated haemoglobin (Hb) in blood at multiple
spectral regions, such as green, red and infrared (IR) region
are used to estimate oxygen saturation level [4][5][6][7].
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Fig. 1. A simplified schematic illustrating the model variables used.

Similarly, non-invasive glucose monitoring device leverages
on the scattering property of glucose molecules under IR
light for glucose concentration estimation in blood [8][9].
Hence, reflectance-based sensing approach have been proven
to be a reliable non-invasive monitoring technique, and this
work proposes utilising the same principle for haemoglobin
detection in fluid.

BWard, an early design prototype for post-catheter extrac-
tion haemorrhage detection, has been presented in [3]. It
relies on measuring the absorbance of a sample at two differ-
ent wavelengths for reliable haemoglobin detection. Firstly,
an IR emitter-photodiode pair, with dominant wavelength
λD = 950 nm, detects fluid presence. Secondly, a green light
emitter-detector pair (λD = 528 nm) subsequently deter-
mines if the fluid contains haemoglobin, which is an indicator
of blood presence. Lastly, an additional contact resistive-
based sensor module measures the electrical resistivity of the
gauze for reliable detection of fluid presence. Consequently,
BWard’s operation requires direct contact with blood-soaked
bandage. For sterility reason, direct contact is undesirable.

In this paper, a new simplified and non-invasive design
(BWatch, see Fig. 5) is proposed. BWatch emits only a
single wavelength for reliable detection of blood presence
in the bandage. For moisture detection, a capacitive-based
sensor that does not require direct contact with blood-soaked
bandage is presented.

II. METHODS

This section presents the theoretical background of mod-
elling light intensity attenuation for blood identification,
followed by the use of principal component analysis (PCA)
for finding a feature vector for dimensionality reduction,
and lastly using a binary support-vector machine (SVM) for
accurate haemoglobin presence classification and detection.

A. Reflectance-based Blood Detection using Green Light

Similar to reflectance pulse oximetry approach [5][7], the
reflected light intensity from a wet bandage, I (λ), can be
described using Beer-Lambert’s law,

I (λ) = I0 (λ) exp (−μa (λ) · d) (1)
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Fig. 2. The normalised absorption spectrum of HbO2 and Hb [7] are
illustrated. The red, blue, and green vertical lines represents the peak
sensitivity of the respective channels of the TCS34725 RGBC sensor [11].

where λ is incident light source wavelength, I0 (λ) is the
incident light source intensity, μa (λ) is the absorption coef-
ficient of the fluid medium, and d is the distance between the
light emitter and detector. The model variables are illustrated
in Fig. 1.

In the case of blood-soaked bandage, the μa (λ) can also
be expressed as the sum of the molar extinction coefficient
ε (λ) multiplied by the concentration C of HbO2 and Hb

μa (λ) = εHbO2
(λ) · CHbO2

+ εHb (λ) · CHb (2)
= εblood (λ) · Cblood (3)

where εblood =
1
2 (εHbO2

+ εHb) and Cblood, CHbO2
and CHb is

the concentration of blood, HbO2 and Hb respectively.
For the purpose of haemoglobin detection, it is assumed

that Cblood = CHbO2 = CHb, making possible the simpli-
fication of (2) to (3). Hence, a non-zero Cblood results in
attenuation of the reflected light intensity measured, I (λ),
which is indicative of blood presence.

Using (3), (1) can then be rewritten as

I (λ) = I0 (λ) exp (−εblood (λ) · Cblood · d) (4)

The absorbance spectrum of HbO2 and Hb in the visible
light spectrum [7] is illustrated in Fig. 2, overlayed with
the dominant wavelength of commercially accessible low-
cost light-emitting diode (LED) [10] and color sensor [11].
Evidently, green light with dominant wavelength λD =
525nm is ideal for haemoglobin detection as it has the
highest absorbance relative to red and blue light. This work
assumes that the absorbance of haemoglobin in the green
spectral region is appreciably higher than other similarly
coloured haemoglobin-absent red fluid, making possible the
distinction between blood and the latter. This assumption will
be empirically proven in the Section III (Results) later.

However, the reflected light intensity measured are often
mixed with unwanted ambient light. Ambient light leaks
into the photo-detector because of variability in tightness
when medical staff secures the device to the bandage, the
irregular surface of the bandage, and etc. To reduce the
measurement variability, a color sensor which outputs clear

channel measurement indicative of the ambient lighting is
desired. Assuming that ambient light have equal proportion
of RGB components, the normalised light intensity Î (λ) is
less susceptible to changes in environment lighting, thus the
degree of ambient light leakage. Then, (4) becomes

Î (λ) = Î0 (λ) exp (−εblood (λ) · Cblood · d) (5)

where Î(λ) = I(λ)/IC , Î0(λ) = I0(λ)/IC , and IC is the
clear light intensity measured.

B. Feature Extraction and Dimensionality Reduction using
Principal Component Analysis

For haemoglobin detection, a straightforward and naive
method would be to base the decision solely on the pro-
portion of green light Î(λ = 525nm) measured. For robust
detection, however, this work proposes using the reflected
light intensity measurements at the red, green, and blue
(RGB) spectral region using a single color sensor. Principal
component analysis (PCA) is introduced to extract repre-
sentative features in the dataset instead. PCA assumes the
correlation in the RGB measurements and exploits it to
extract unique features, known as principal components, that
maximises the variance in the new feature space [12].

The assumption of inherent correlation in the measured
RGB intensity is valid due to two factors. Firstly, low-cost
RGB sensors has appreciable cross-talk between the different
color channels [11]. For example, an input irradiance by of
a narrow-band green light with dominant wavelength λD =
525 nm with spectral halfwidth of 35 nm results in a typical
14.5%, 72.5% and 27.5% output in the red, blue and green
channel of the color sensor respectively [11]. Secondly, the
normalisation step introduced to reduce the effect of ambient
light leakage results in dependency between the normalised
RGB light measurement. For example, an increase in pro-
portion of one color component (e.g. red light) correlates to
a reduction in proportion of the remaining components (e.g.
blue and green). These inherent correlations are exploited to
find principal components which are linear combination of
the original input data.

The kth principal component (PC) zk is given by

zk = αkÎ = αk1Î(R)+ αk2Î(G)+ αk3Î(B) (6)

where Î(R), Î(G), Î(B) are the normalised RGB light
intensity measured and αk is the feature vector of the kth

PC, which have unit length (i.e. ||αk||2 = 1).
The kth PC is derived from the singular-value decomposi-

tion or the eigenvectors of the covariance matrix Σ where

Σ = Î Î
T
/n (7)

The kth column of P = [α1,α2,α3], αk contains the
coefficients of the kth PC, and corresponding eigenvalue
indicates the relative order of the PCs. Significantly, the
eigenvector with the highest associated eigenvalue is the 1st

PC.
The variance of the kth PC is defined as

σzk =
1

N − 1

N∑

i=1

|zk,i − z̄k|2 (8)
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where N is the sample size, and z̄k is the sample mean. The
variance of the original RGB components prior to the PCA
transform are denoted as σR, σG, and σB respectively.

C. Blood Classification and Detection

For real-time detection, a simple threshold-based method
is proposed. The threshold is determined by computing the
decision boundary using binary SVM with linear kernel,
trained offline using m labelled training examples consisting
of blood and non-blood fluid medium. Assuming linearly
separable data, the SVM minimises the objective function
[13]

min
β,b

1

2
||β||2 −

∑

j

αj(yj(x
′
jβ + b)− 1) (9)

where xj is the j-th data point, and yj is the label {+1,−1}
of the xj corresponding to blood and non-blood respectively,
β is the normal vector to the separating hyperplane, b is
the bias, and αj is a positive nonzero Langranger multiplier
enforcing the classification constraint.

The margin γ, defined by 2/||β̂||, defines the maximal dis-
tance normal to the hyperplane with no interior data points.
A larger margin is indicative of better class separability.

III. RESULTS

This section presents the hardware implementation of the
proposed prototype, BWatch, followed by the detail of the
various experimental investigations.

A. Proposed Prototype: BWatch

BWatch (see Fig. 5) has a compact circular form fac-
tor, measuring 48mm diameter and weighs 19.25g. The
key components of BWatch are an indium gallium nitride
(InGaN) LED with dominant wavelength λD = 525nm
to provide illumination, and a TCS3472 color sensor that
measures reflected red, green, blue (RGB) light intensity.
A capacitive sensor senses moisture on the bandage and
activates the green LED for blood detection. Fig. 3(a) - (c)
illustrates the mode of operation of BWatch when blood
presence is detected in the bandage, and Fig. 3(d) when
no blood presence is detected. A low-power ATSAMD21G
microprocessor runs a lightweight algorithm, and controls the
buzzer to sound when blood presence is detected. A 2MB
on-board FLASH storage stores critical data for debugging
and troubleshooting. The on-board electronics are powered
by a replaceable and rechargable LIR2032 40mAh battery.

The electrical schematics of the key circuitry of BWatch
are shown in Fig. 6. The capacitive moisture sensor is a
copper pad (labelled as T1) which acts as the cathode pad.
A capacitor, given a range from 0μF to 0.05μF, connected
to T1 is used to vary the sensitivity of the moisture sensor.
The TCS34725 RGB light sensor communicates to the At-
mel ATSAMD21G MCU, (Microcontroller Unit) using I2C
protocol. The green LED is directly connected to the MCU,
and switches on which an active-high input sent from the
MCU. The buzzer is connected to the LIR2032 battery. The
buzzer is connected in series to a MOSFET, and a pulse-
width-modulated (PWM) signal sent from the MCU controls

the activation of the buzzer. A diode is used to prevent any
backflow current since the buzzer has an input voltage range
of 3V to 5V.

B. Experimental Setup

A custom-made experimental rig was designed and de-
veloped to simulate bleeding at site of catheter inser-
tion/extraction. The rig consist of the plastic enclosure with
flat surface on the top to emulate the large surface of a
human skin. The wound site is simulated by a hole, which
is punctured at the centre of the box, and a plastic tube is
connected from below to transport the fluid sample to the
site. A peristaltic pump transfers the test fluid from a beaker
to the bleeding site. The speed and direction of the fluid flow
is controlled by a pump controller operating in three mode:
namely forward, reverse, and pause mode.

To closely emulate the clinical scenario, the most common
bandaging method was applied at the wound site. Firstly, two
ply of gauze swab (Smith & Nephew) were placed over the
wound site. Secondly, a layer of film dressing (3M Tegaderm)
was applied to secure the gauze to the skin. Lastly, BWatch
was placed in a plastic ziploc bag and secured to the bandage
and the patient using surgical tape. Significantly, BWatch
does not have direct contact to the gauze swab, as compared
to BWard [3].

A total of six different medium were chosen to collect
training examples to 1) determine the optimal green light
intensity and 2) derive the decision boundary of the binary
SVM classifier. The medium chosen were clean dry gauze,
and gauze soaked in tap water, saline (0.9% sodium chlo-
ride), unsweetened pure pomegranate juice, red food-grade
dye, and real blood. Tap water and saline were selected to
emulate a soaked gauze due to accidental spillage of drinking
water and natural perspiration respectively. Pomegranate and
red dye are red fluid chosen to evaluate the robustness of the
device to distinguish blood from other similarly coloured
solution.

C. Effects of Light Intensity

The first experiment investigates the effects of light inten-
sity on σz1, the 1st PC variance 1st PC, and σR, σG, and σB ,
which are the variance of normalised RGB data respectively.
The results are shown in Fig. 7. Recall the variance of 1st PC
and the normalised RGB proportion data are calculated using
(8). A larger variance is desirable as it is beneficial to the
subsequent classification step. The light intensity of the green
LED was controlled by varying the duty cycle of the input
pulse-width-modulated (PWM) signal. The percentage duty
cycle of [0, 100] output by the microcontroller corresponds
to the 8-bit input u of [0, 255]. At each intensity level, ui,
4 samples from the RGB sensor xi were recorded. The
experiment was repeated three times for consistency, across
all six mediums. Hence, a total of 12 samples per intensity
per medium are collected.

Fig. 7 shows the results the normalised variance of the 1st

PC, and RGB component against the intensity level tested.
The normalised variance was obtained by dividing the sample
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Fig. 3. The simplified overview of BWatch operation is illustrated. The key components are indicated in (a). Firstly, moisture presence in the gauze
results in a change in capacitance of the moisture sensor, triggering the green LED to light up (b). Secondly, the light sensor measures the reflected RGB
light intensity to determine blood presence (c). Lastly, if the measurement passed a threshold T , the buzzer sounds to alert nearby medical staff (c). If the
required threshold is not passed, the device continues to monitor (d).

Fig. 4. The key components used in the experimental setup are illustrated.
BWatch was wrapped in a plastic ziploc bag and placed aboved the film
dressing that secures the gauze swab to the box.

Fig. 5. The key components of BWatch are illustrated. The green LED
is used to illuminate the bandage, and the TCS34725 RGB light sensor
measures the reflected light intensity.

variance by the max(σR). It is observed that the variance
increases with the increased light intensity level initially. The
maximum variance for the 1st PC, red and green data are
observed at u = 9. Further increment of the light intensity
results in an exponentially drop in the resulting variance.
The optimal intensity u∗ = 9 was selected for subsequent
experimentations.

The variation of the 1st PC was compared to red, blue,
and green measurements recorded at the optimal intensity
input u∗ = 9 as shown in Fig 8. Intendedly, the 1st
PC displayed the highest variance between blood and the
other non-blood medium, followed by red, green, and blue

Fig. 6. The electrical schematics for the capacitive moisture sensor, light
emitter and color sensor, and buzzer are shown.

Fig. 7. The effects of the incident light intensity on the variance of the 1st
Principal Component (1st PC). The maximum variance occur at intensity
level u∗ = 9.

components respectively. The variance are summarised in
Table II. Significantly, the 1st PC resulted in a 50% increase
in variance compared to red (the next highest variance).

D. Optimal PCA and Detection Performance

At the optimal intensity, u∗ = 9, the coefficients of the
ÎR, ÎG, ÎB are listed in Table I. Evidently, the 1st PC points
in the direction of ÎR and ÎG, with a greater weightage given
to the former. The scatter plot of ÎR against ÎG are shown
in Fig. 11. Significantly, the high absorbance characteristic
of blood in the green spectrum results in a lower proportion
of green light reflected. In addition, the blood reflects an
appreciably higher proportion of red light compared to non-
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Fig. 8. The values of three principal components, and the normalised red,
blue and green intensity measured are visualised across the different medium
tested. The physical appearance of the gauze in the different medium are
shown.

Fig. 9. The size of the blood stain on the gauze swab across the 10 clinical
experiments with Cblood = 100%. The mean blood blob size is 1000mm2

and the min and max size is 874mm2 and 1165mm2 respectively.

blood medium, which includes pomegranate and red dye.
The 12 data samples collected from each medium in the

previous experiment at u∗ = 9 and the computed 1st PC was
used for offline training of a binary SVM with linear kernel.
The decision boundary and the training examples of blood
and non-blood medium (i.e. dry, water, saline, pomegranate
and red dye) are shown in Fig. 10. The boundary for blood
detection is at z1 = −0.19, with a margin of 0.56. Compared
to a heuristically-driven approach of illuminating the gauze
at maximum intensity u = 255 results in a sub-optimal
variance as shown in Fig. 7. At u = 255, the 1st PC is
almost equivalent to relying solely on the green channel
measurements. The threshold for blood detection is at z1 =
−0.06 and a margin of 0.10

The classification algorithm based on the 1st was validated
with across 10 clinical experiments with real blood. Across
all experiments, BWatch achieved 100% detection rate. The
validation data are shown together with the training examples
in Fig. 10.

The detection time and the area of the blood blob are
recorded in Table IV. The detection time was computed using
td = talert−tstart, where talert is the time the buzzer sounds and

TABLE I
FIRST THREE PCS AT OPTIMAL AND SUB-OPTIMAL INTENSITY

Component Number, k 1 2 3
Coefficient Optimal (u = 9)
Red, αk1 0.80 -0.31 -0.51
Green, αk2 0.59 -0.52 -0.61
Blue αk1 -0.08 -0.79 0.60
Cumulative Variation 93.77 99.88 100.00

Coefficient Sub-Optimal (u = 255)
Red αk1 -0.28 -0.94 0.21
Green αk2 0.96 -0.28 0.06
Blue αk3 0.00 0.22 0.96
Cumulative Variation 93.40 99.81 100.00

TABLE II
COMPARISON OF VARIABLE VARIANCE BEFORE AND AFTER PCA

Variable
1st PC Red Blue Green
σk1 σR σG σB

Variance 0.023 0.015 0.0086 0.011

tstart is the time the peristaltic pump is started. The blood blob
size was determine using the Image Processing Toolbox in
MATLAB. The cropped RGB images of the gauze (see Fig.
9) are first converted into HSV images. A HSV threshold was
applied to extract the size of blood blob (in pixel) from the
resulting image. The blob area Ablob was calculated using
Ablob = Agauze · Nblob

Nimage
where Agauze is the known area of

the 75mm by 75mm gauze, Nblob is the size of the blood
blob (in pixel) and Nimage is the image pixel size. The mean
size of the blood blob is 1000mm2 with a standard deviation
of 96mm2, and the detection time averages at 4.88s with a
standard deviation of 0.85s.

E. Performance Evaluation with Previous Work

The proposed method for blood detection using PCA is
compared with the approach presented in [3]. In [3], the
authors proposed using only the reflected green light inten-
sity directly, and applying a simple thresholding method to
determine blood presence. The results using the experimental
data obtained in this work is shown Fig. 12. Generally, the

Fig. 10. The scatter plot of the 1st PC of the training and validation dataset
are illustrated.
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TABLE III
SVM MARGIN AT OPTIMAL AND SUB-OPTIMAL INTENSITY

Intensity Optimal Sub-Optimal
u = 9 u = 255

Method PCA RGB PCA RGB
Margin γ 0.56 0.36 0.10 0.10

Fig. 11. The scatter plot using the normalised reflected green and red light
intensity of the training and validation dataset are illustrated.

findings corroborate with that in [3], that blood demonstrates
distinct absorbance in the at around λ = 525nm spectral
region when compared to 0.9% saline solution. However,
it is challenging to distinguish blood from similarly color
haemoglobin-absent fluid, such as pomegranate juice and red
food dye, as shown in Fig. 12. In this aspect, the proposed
method of applying PCA and using the 1st PC, which is a
linear combination of the normalised intensity of the reflected
RGB light, for blood classification is superior. As shown in
Fig. 10, the non-blood data which includes pomegranate juice
and red dye forms a distinct cluster with tap water and saline.

IV. CONCLUSION

BWatch, a non-invasive continuous monitoring device
for post-catheter insertion/extraction bleeding detection was
presented. A simple threshold-based method based on the
PCA using normalised RGB values were conceived. A binary
SVM was trained on the 1st PC of blood and non-blood
medium at the optimal intensity to derive the the single-
value threshold for accurate detection. Significantly, the
proposed approach is able to distinguish blood from similarly
color haemoglobin-absent medium, preventing false positive
detection. Also, BWatch achieved 100% detection rate across
10 clinical experiments with real blood. Future work will
focus on assessing the performance of BWatch during in
vivo clinical trial on actual CVC insertion/extraction site,
and fine-tuning the design for better usability by medical
staffs.
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